
Volume xx (200y), Number z, pp. 1–11

Multi-Agent Path Planning with Asymmetric Interactions In Tight
Spaces

V. Modi1 Y. Chen 1 , A. Madan 1 , S. Sueda 2 , and D. I. W. Levin 1

1University of Toronto, Toronto, Canada
2Texas A&M University, College Station, TX

?

?

?

Figure 1: Safari Escape

Abstract
By starting with the assumption that motion is fundamentally a decision making problem, we use the world-line concept from
Special Relativity as the inspiration for a novel multi-agent path planning method. We have identified a particular set of prob-
lems that have so far been overlooked by previous works. We present our solution for the global path planning problem for
each agent and ensure smooth local collision avoidance for each pair of agents in the scene. We accomplish this by modeling
the trajectories of the agents through 2D space and time as curves in 3D. Global path planning is solved using a modified
Djikstra’s algorithm to ensure that initial trajectories for agents do not intersect. We then solve for smooth local trajectories
using a quasi-Newton interior point solver, providing the trajectory curves with a radius to turn them into rods. Subsequently,
resolving collision of the rods ensures that no two agents are in the same spatial position at the same time. This space-time
formulation allows us to simulate previously ignored phenomena such as highly asymmetric interactions in very constrained
environments. It also provides a solution for scenes with unnaturally symmetric agent alignments without the need for jittering
agent positions or velocities.

1. Introduction

On a hot dry day in Kruger National Park, an empty truck idles
on the side of a road. Sam, the driver of the truck, has wandered
a hundred meters off the road in an attempt to take a picture of a
tree with ten baboons. The baboons suddenly jump out of the tree
and charge towards Sam. Sam panics and starts running back to the
truck; however, coincidentally an elephant wandering in the area is
on a path perpendicular to Sam’s, between him and the truck. How
will Sam get back to the truck safely while outrunning the baboons

and avoiding collision with the elephant? What are the paths of the
twelve agents in the scene: Sam, the elephant and the ten baboons?

The problem above poses many challenges to a multi-agent path
planning algorithm. First Sam must anticipate collisions ahead of
time, in order to move quickly and efficiently to their truck. Sec-
ond, the three groups of agents, Sam, the baboons and the ele-
phant have dramatically different masses and behaviors. For in-
stance while Sam seeks to avoid all animals, the massive elephant
is untroubled, and will stubbornly continue on its path. Finally, ge-

submitted to COMPUTER GRAPHICS Forum (3/2022).

https://orcid.org/ 0000-0002-9350-494X
https://orcid.org/0000-0001-7547-9587
https://orcid.org/0000-0001-7547-9587
https://orcid.org/0000-0003-4656-498X
https://orcid.org/0000-0001-7079-1934

2 V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces

ographic features such as additional trees and ponds can lead to
a highly constrained environment. Existing state-of-the-art crowd
simulation methods struggle to compute anticipatory agent paths
in constrained environments when asymmetric interactions are in-
volved (Table 1) making them ill-suited for application in planning
problems such as the example given above.

We propose a new multi-agent path planning algorithm well
suited for these problems. Our model directly optimizes the space-
time trajectories of all agents which allows for per-agent physical
and psychological characteristics and smooth anticipatory trajec-
tories. A novel, differentiable space-time repulsive energy ensures
collision free trajectories. Using our approach, Sam arrives safely
at the truck, escaping the baboons and avoiding the elephant.

Figure 2: Sam needs to escape ,from the baboons while avoiding
the elephant, whereas the elephant is unconcerned with the other
agents in the scene.

2. Related Work

Successful multi-agent path planning requires an algorithm to both
correctly model the behavior of independent agents as well as their
interactions. A common approach is to apply a dynamics model
based on Newton’s second law of motion which is integrated over
time to produce plausible agent trajectories. Psychological and so-
cial characteristics of the group can be incorporated into the dy-
namics equations as social forces [POSB05; HM98; WLJT17].
Intra-agent forces, such as those that handle collision avoidance
are added through a variety of means, and we can partition the
space of successful approaches based on locality of their models
in both space and time. Approaches such as [GKLM11] incorpo-
rate psychological factors into an underlying dynamics model, but
it is impossible to tell apart the psychological traits of the agents by
simply observing the simulation. Our method makes the impact of
agent characteristics on the trajectory very obvious, while provid-
ing a standalone local and global dynamics model for the scene.

In local methods, agent decision making requires information
only local in space and in time. Local collision avoidance meth-
ods [VGLM11; GNCL14; WLP16] compute collision response
using local information in space and time (the planning horizon
can be as small as a single time step). These methods strug-
gle to generate smooth anticipatory collision responses. Implicit
Crowds [KSNG17] attempts to overcome this difficulty by intro-
ducing a time-to-collision potential to the crowd dynamics. This

gives agents richer space-time information on which to act; how-
ever this energy is effectively local, computed from the current state
of the system (position and velocity). NH-TTC [DKG20] improves
upon prior work by utilizing longer planning horizon, geometri-
cally represented by curves in space. Intersection checks between
these curves allow agents to react to collisions likely to occur in the
near future. Similarly, vision based methods, such as [OPOD10;
DMC*17] provide an anticipatory collision avoidance model, but
with extremely limited path planning capabilities and no guaran-
tee of smooth agent motion. Data-driven aproaches such as [CC14]
use an underlying state-action graph created via external data to
generate trajectories. However, these trajectories are highly data-
dependent, do not factor in environmental constraints, seem to op-
erate in sparse crowds and must be used in conjunction with some
other higher level global path planner.

An alternative approach to more local methods is to extend the
collision response globally in space using a fluid like pressure
solve [Hug02; TCP06; NGCL09]. However because these methods
only consider the configuration of the system (position and veloc-
ity of each agent) at a single time, their ability to produce smooth
anticipatory collision response, especially in a sparser setting, is re-
duced. Continuum Crowds stands out as one of the only methods
that incorporates both a global planner through Djikstra’s search
and local collision avoidance through a fluid-like pressure solve.
Another option is to handle local collision avoidance using RVO
or Social Forces, as done by the data-driven method [TYK*09].
Optionally, one might use [HKHL13], another data-driven method
which uses a purely stochastic collision avoidance method. None
of these approaches solve the problems of handling tight environ-
mental constrains or asymmetric agent interactions. In fact, an ad-
jacent field of research, that involves measuring the "correctness"
of various crowd models ([GVL*12; WJO*14]) also fails to test
for asymmetric agents and behavior in complex environments.

Figure 3: The repulsive curves
energy forces agents to be max-
imally far away from one another
which is not an intuitive behavior.

Finally, while not strictly
designed for multi-agent
path planning, Repulsive
Curves [YSC21] can po-
tentially be used for agent
planning. While it yields
impressive results in 3D curve
untangling, when applied to
multi-agent path planning it
has several drawbacks. First,
in unconstrained environ-
ments, Repulsive Curves will
maximally repell agents away
as shown in Figure 3. Secondly, like other previous methods,
there is no straightforward way to model asymmetric agents.
Lastly, Repulsive Curves uses random "jitter" to ensure that no
trajectories initially overlap. From our own experiments, we have
observed that this is not sufficient to guarantee non-overlapping
initial trajectories. Meanwhile, our space-time Djikstra’s approach
is guaranteed to create initially non-intersecting trajectories, but
is not sufficient for overcoming the other limitations of Repulsive
Curves.

submitted to COMPUTER GRAPHICS Forum (3/2022).

V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces 3

In this paper we present a multi-agent path planner that computes
its response globally in space and time. Rather than formulating our
multi-agent planner as an initial value problem, we instead take a
space-time optimization approach.

Space-time trajectory optimization [WK88] was initially ap-
plied to keyframe interpolation, with subsequent methods such
as [PSE*00] allowing manual editing of object trajectories
and [SKF08] allowing interactive motion correction and synthesis
using graph search methods. The concept of using space-time graph
search methods for collision avoidance is furthered in [LLKP11]
for a single agent and [SKH*11] for small groups. For larger situ-
ations, standard space-time approaches would be computationally
prohibitive. Our method builds on these prior methods by expand-
ing the look-ahead globally and ensuring smooth paths by colli-
sion resolution on the entire trajectories rather than using a limited
space-time graph search approach.

Our method treats each agent as an individual space time curve
with only three requirements: a starting position and time and an
ending position (at indeterminate time). We use a globally sup-
ported, differentiable LogSumExp smooth distance in space-time
to guarantee collision free trajectories and solve the resulting prob-
lem using an interior-point technique. For small to medium scale
crowds, our method outperforms current state-of-the-art methods in
simple scenarios (Figure 4a and Figure 4b) and more complicated,
constrained environments. Our agents exhibit anticipatory behav-
iors such as slowing and waiting to let others pass and makes no
assumptions about agents having identical mass or other physical
properties. This enables planning of intricate scenes with environ-
mental constraints such as the one described in our introduction.

OursNH-T

TC

Implicit

Crowds
RVO

- Starts
- Ends

(a) 3 agents

RVO No offset Implicit Crowds

NH-TTC

Ours

RVO With Offset

(b) 8 agents

Figure 4: On the left, circles denote the start position of the agents
and starts denote the desired end position. Only our method lets
agents reach their desired ends without any locking. On the right,
each agent wants to traverse to the directly opposite end of the cir-
cle. Our method leads to the most efficient trajectories.

3. Method

At a high level we are influenced by the notion of correlated equi-
librium. In a correlated equilibrium solution to a non-cooperative
game, an "oracle" chooses a strategy for each player, and no player
has any reason to deviate from the chosen strategy assuming others
do not deviate either. The result is an equilibrium solution which
maximizes collective utility.

Our method acts as the oracle of the scene and plans agent tra-
jectories in a way that collectively maximizes the utility of the en-
tire scene. Additionally, unlike previous approaches which ‘pre-set’
trajectories for agents (often done manually), we allow our agents
to find their own utility-maximizing trajectories. Lastly, real life
agents have different sizes, masses, and personalities, which affect
the agents’ utilities, and therefore its path as well. Our local-global
path planning approach allows for these nuances.

x

y

x

y

t

f1
f2 f3 = f*

f3 = f*
f2

f1

2D Costs

3D Costs

�

�

Figure 5: Top: A path through space can be represented as a curve
embedded in R2. Every path has a scalar cost (utility) value. For
a cost function that minimizes distance travelled, c1 and c2 are in-
optimal paths from the start to the goal (red X), but c3 is optimal.
Bottom: A path through space and time can be represented as a
curve in R3. A space-time rod (as shown here) is simply a 3D curve
with a collision radius.

3.1. Paths Map To Utility

As shown in Figure 5, for an agent, each path from the start location
to the end location through space maps to some scalar utility value.
For example, if the agent’s utility minimized distance traveled, a
straight line from start to end would prove to be the optimal path.
In Figure 5, the 2D x-y plane describes the domain of spatial motion
for agent paths. We make the additional observation that agents
do not simply move through space, but also move through time
which is denoted by the vertical z-axis. So, in 3D space-time, the
agent’s motion through space (x,y) and time (t) is described by a
3D curve which corresponds to a utility. For any given moment in

submitted to COMPUTER GRAPHICS Forum (3/2022).

4 V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces

Features Ours (1) RVO (2) IC (3) NH-TTC (4) RC (5) CC (6) STPL (7) AABS
Asymmetric Interactions Y N P P N N N N
Extremely Constrained Environments Y N N N Y N P Y
Smooth Local Interactions Y N Y N Y N Y N
Intuitive Control Parameters Y Y N P N N N Y
Multiple Agents Y Y Y Y Y Y N Y
Code Available Online Y Y Y Y Y N N N

Table 1: Compare (1) RVO ([VGLM11]), (2) Implicit Crowds ([KSNG17]), the brand new time-to-collision method (3), NH-TTC
([DKG20]), (4) Repulsive Curves ([YSC21]), (5) Continuum Crowds ([TCP06]), (6) Space Time Planning With Parameterized Locomo-
tion Control ([LLKP11]), and (7) Modular Framework for Adaptive Agent Base Steering ([SKH*11]). Y - feature is available, N - feature is
not possible, P - feature might be possible, but not demonstrated.

time, the projection of the curve onto the x-y plane gives us the
agent’s location.

Let us consider a simple case where there are no other agents
in the scene and the terrain is flat and free of obstacles. The agent,
indexed henceforth by subscript a, wishes to maximize its utility
(by minimizing cost, Ψ̄); the tilde symbol indicates the variable
or function is continuous, not discrete. Lower case variables indi-
cate a single agent. Upper case indicates the variable aggregates all
agents. The motion of the agent through space and time denoted
by the agent’s 3D space-time curve s̃a embedded in Rx,y,t requires
constraints. Fortunately all our constraints are linear, so we lump
them together into B̃ for now. Put together, the full optimization for
a single agent a is

f ∗a = min
∫

s̃a

ψ̃(s̃a)ds̃a (1a)

s.t. B̃s̃a ≤ 0. (1b)

The cost, Equation 1a, for agent a is integrated over the trajectory
of the agent (s̃a). The specific nature of the cost function deter-
mines the agents’ behavior based on its characteristics. An agent
might have a preferred walking speed, or a stubbornness factor, or
a radius of comfort, all of which (and more) can be encoded into
components of ψ̃. In order to solve this optimization, we must first
discretize the agent’s trajectory into the discrete curve sa shown
in Figure 6. We also discretize the cost ψ̃ into separate intra-agent
costs, which solely affect the path of one individual, and interaction
costs, which can affect multiple agents.

3.2. Discretizing

Our agent’s cost function takes in the agent’s discrete 3D space-
time curve sa as input and outputs a scalar cost for that path,
fa. We descretize the agent’s continuous s̃ into a piecewise lin-
ear curve described by n+1 nodes sa = [(x0

a,y
0
a, t

0
a), ...,(x

i
a,y

i
a, t

i
a),

....,(xn
a,y

n
a, t

n
a)] for nodes i = 0..n connected sequentially by edges.

We must also discretize our constraints. First, even though time is
a variable in our formulation, Equation 2b ensures the agent can-
not move backwards in time. Second, the agent has a start location
(x0

a,y
0
a) and start time t0

a denoted in Equation 2c. Third, Equation 2d
sets a goal or an end location (xn

a,y
n
a). Lastly, the agent cannot take

an infinite amount of time, so Equation 2e bounds the agent by a
max time T max

a . Putting all of this together, we can re-write the op-
timization for agent a with the discrete generalized cost function ψ

as

f ∗a = min
n

∑
i=0

ψ(sa) (2a)

s.t. t i
a ≤ t i+1

a (2b)

(x0
a,y

0
a, t

0
a) = (xa,ya, ta)

start (2c)

(xn
a,y

n
a) = (xa,ya)

end (2d)

tn
a ≤ T max

a . (2e)

Now with a template for our optimization problem, we can re-
place the generalized cost function with specific discrete costs.
Our specific cost functions are derived from observation of real
behavior. These behavioral observations are divided into two cat-
egories, intra-agent costs, and interactions costs. Intra-agent cost
functions only look at one agent’s path at a time. Interaction cost
functions include avoiding collisions with other agents, collisions
with static obstacles such as walls or furniture, grouping behavior
within friends, asymmetric behavior based on the mass, size of the
agents, or other characteristics.

3.3. Intra-Agent Costs

xi, yi, ti

�

X0, Y0, T0

project to

map’s plane

Xn, Yn

agent’s motion

through x-y space

xi, yi

Figure 6: This space-time rod
describes a discrete space-time
trajectory curve made up of
many nodes. Our agent moves
along the projection of the rod
from its start to end, taking
into account the boundary con-
straints of the problem.

Since these costs apply to a sin-
gle agent, we calculate intra-
agent costs for arbitrary agent
a and later we show how to
sum the costs over the entire
scene. The path of our agent,
sa, is comprised of of n +
1 nodes indexed by i = 1..n.
Each node (xi(sa),yi(sa), t i(sa))
is comprised of the agent’s spatial
(x,y) coordinates and time (t) co-
ordinates. For all cost functions,
agent a also has constant weight-
ing terms, Ka, as well as constant
characteristics such as mass, ma,
and preferred end time, T p

a .

3.3.1. Intra-Agent Kinetic Cost

Our agent a will try to mini-
mize energy expenditure. Given

submitted to COMPUTER GRAPHICS Forum (3/2022).

V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces 5

an agent’s space-time curve sa,
the kinetic energy cost of the agent over the curve can be written as

CK
a (sa,KK

a) = KK
a

n

∑
i=0

1
2

ma
(∆xi

a)
T (∆xi

a)

(∆t i
a)2 (∆t i

a) (3)

= KK
a

n

∑
i=0

1
2

ma
(xi+1(sa)− xi(sa))

2 +(yi+1(sa)− yi(sa))
2

t i+1(sa)− t i(sa)
(4)

where Equation 3 is the kinetic energy 1
2 mv2 for curve segment

ei
a = [xi

a,y
i
a, t

i
a,x

i+1
a ,yi+1

a , t i+1
a] integrated over total time travelled

∆t i
a = t i+1

a − t i. This simplifies into Equation 4 where KK
a is the

agent-wise weighting coefficient, ma is the mass of the agent and
sa is the discretized path curve (our input variable) made up of n+1
nodes.

3.3.2. Intra-Agent Acceleration Cost

In order to penalize acceleration in agent a’s trajectory, the acceler-
ation cost

CA
a (sa,KA

a) = KA
a

n−1

∑
i=1

1
2
(θi

a)
2 (5)

measures the curvature of sa through the discretized acceleration
cost where angle θ is the angle between two piece-wise linear
segments of the curve computed using the stable arctan function

arctan2. The angle is θ
i
a = arctan2(‖(s

i+1
a −si

a)×(s
i
a−si−1

a)‖
(si+1

a −si
a)

T (si
a−si−1

a)
) where

si
a = [xi,yi, t i] for each node in the curve.

3.3.3. Intra-Agent Preferred End Time Cost

Any agent a has a preferred end time, T p
a at which they expect to

reach the end position. Sometimes this is the same as the max end
time T max

a by when the agent is required to be at the end positions,
but sometimes the preferred end time T p

a can be sooner. Deviation
from the preferred end time is modeled as a quadratic cost

CT
a (sa,T

p
a ,KT

a) = KT
a

1
2
(tn

a −T p
a)2 (6)

incentivizing the agents to arrive at their preferred end time T p
a by

keeping the actual end time for each agent, tn
a , close to T p

a .

3.3.4. Regularizing Cost

We find that adding a regularizing term to penalize extremely short
time segments improves the overall quality of the paths by reduc-
ing near instantaneous motions in time. To penalize very fast agent
motion, we use the regularizing term

CR
a (sa,KR

a) = KR
a

n

∑
i=0

(tn
a
n

t i+1
a − t i

a

)
. (7)

This is important because it allows us to feed the solver an initial
space-time curve such as the ones in Figure 11 with many near
instantaneous agent motions, and the solver is able to optimize the
final space-time curve to a much more reasonable trajectory.

3.4. Interaction Cost

Interactions include agent-environment interactions and agent-
agent interactions for which we must introduce a new arbitrary
agent indexed by b where a 6= b. All our interactions depend on
each agent’s ‘radius of comfort’ (or collision radius), denoted by
ra,rb for agents a and b. The collision radius might be based on
size, or a combination of size and personality: for example, people
stay away from angry people. We encode these agent characteristics
into our cost functions by extruding circle with radius ra along the
agent’s path sa thus forming a rod. In a scene with multiple agents,
as long as no two rods are intersecting, the scene is collision free as
shown in Figure 7. The collision radius ensures that no two agents
are in the same place at the same time. So even though the forces
between the two space-time rods might be symmetric, the agents’
response to these forces (change in path) leads to asymmetric inter-
actions. For static object interactions, the environment boundary is
encoded into boundary vertices bv and boundary elements be. Let
us examine how we detect which rods are intersecting and how we
deal with our three interaction types: agent-agent collisions, agent-
agent groupings (friendships), and agent-environment collisions.

Figure 7: Resolving intersections between agents space-time rods
resolves collisions in the scene since no agent shares the same x,y, t
location at any point in the scene.

3.4.1. Collision Interaction Cost

radius of collision

tunneling

Figure 8: Tunneling
artifact.

Given a pair of agents a,b with 3D space-
time curves sa,sb and collision radii ra,rb,
we densely sample each space-time curve
uniformly. Next, we calculate the mini-
mum smooth distances between the up-
sampled centerlines using the method de-
scribed in subsection 3.5. As long as the
smooth minimum distance d between the
upsampled rods ua = upsample(sa),ub =
upsample(sb) is further apart than ra + rb, collisions will not occur.
We implement this non-linear constraint on the agent paths as a log

submitted to COMPUTER GRAPHICS Forum (3/2022).

6 V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces

barrier energy:

CC
a,b(d(α,upsample(sa),upsample(sb)),ra,rb,K

C
a,b)

=−KC
a,b log(−(ra + rb)+d)). (8)

where KC
a,b is the pair-wise weighting coefficient on the energy. The

intuition behind a log barrier energy is explained in Figure 9. Up-
sampling the trajectories prevents tunneling artifacts (Figure 8) be-
tween edges during collision detection. The collision cost increases
exponentially as the minimum distance between the two agent rods
approaches the sum of the collision radii, so collisions are expo-
nentially penalized. By summing this cost with the kinetic energy
term, which incentivizes agents to move at a constant velocity, we
get smooth local collision resolution as shown in Figure 7.

We employ two methods for sparsifying interactions. First, we
use a 3D tree structure to store agent trajectory nodes (analogous
to a Bounded Volume Hierarchy BVH) for broad-phase collision
detection between trajectories. The tree-based broad phase reduces
collision detection costs from O(n2) to O(nlogn). Second, if two
agents are known to be far apart, we entirely avoid the collision
detection step between those two agents thus reducing costs to O(n)
in the best case. Using a combination of tree based broad phase
along with manual denotation of interacting agents, we find that
our method scales nearly linearly O(n)as the number of agents in
the scene increases.

smooth distance

Agent Interaction Costs vs Smooth Distance

ag
en

t
in

te
ra

ct
io

n
 c

o
st

log barrier collision cost quadratic grouping cost

not colliding yet

close together

Figure 9: The log barrier energy quickly tends towards infinity as
the minimum distance approaches the collision radius.

3.4.2. Grouping Interaction Cost

While the collision resolution term pushes agent paths apart, we
introduce a grouping term which pulls paths together

CG
a,b(d(α,upsample(sa),upsample(sb)),ra,rb,K

G
a,b)

= KG
a,b(d− (ra + rb))

2. (9)

This quadratic grouping term allows us to model scenarios in which
friends going in the same direction tend to stick together as shown
in Figure 17, or scenarios in which an agent needs to deliver a mes-
sage to another agent who is out of the way from his final destina-
tion such as Figure 19. The weighting term KG

a,b controls the desire
of the agents a,b to group together.

3.4.3. Agent-Environment Interaction

We surpass previous methods in three ways in terms of
agent-environment interactions. Firstly, our method works on
agents traversing highly constrained environments such as Fig-
ure 14a, Figure 14b, or Figure 18a. Secondly, our method allows
agents to explore routes when multiple paths are available and
choose the most optimal path using a novel modification to Djik-
stra’s algorithm. Thirdly, our path planning step is topology aware,
so this method will work on more fascinating terrain.

Environment maps are stored as 2D mesh files with vertices and
faces. We pre-compute the vertices and edges around the bound-
aries of the map and any static obstacles into bv and be as a one-time
preprocessing step. Next, we compute the minimum smooth dis-
tance between the map boundary edges and the agent rod. Luckily
since static obstacles are fixed in space for all time, we can ignore
the third dimension and only compute the 2D minimum distance,
d(α,sa,bv) from the rod’s projection onto the map and the map’s
boundary edges. Next we pass the smooth distance d into the log
barrier function

CM
a (d(α,upsample(sa),bv),ra) =−KM

a log(−ra +d) (10)

where KM
a is the energy coefficient. Like in the agent-agent colli-

sion function (Equation 8), we can use the collision radius ra for
each agent since the initial agent paths are sufficiently far enough
away from static obstacles such that d > ra. The coarseness of the
map mesh does not impact the smoothness of agent path; however,
Djikstra’s algorithm requires two vertices on the map which corre-
spond to the agent’s start and end positions to generate the initial
path. Therefore, we set the nearest vertices to the given start and
end points as the boundary conditions for the solve.

3.5. Smooth Min Distance Implementation

The absolute minimum distance between agent paths is not a differ-
entiable function. Therefore, we use a differentiable LogSumExp
smooth minimum distance function to smoothly approximate the
distance between two upsampled space-time curve vertices ua and
ub. See the supplementary material for derivatives of the function.
The smooth minimum distance function is

d(α,ua,ub) =
−1
α

log

(
n

∑
i=0

n

∑
j=0

e−α‖si
a−s j

b‖
)

(11)

where the α term controls the numerical sensitivity of the distance
which changes depending on the size of the environment mesh and
the distances between the agents’ path curves. A higher α leads to a
more accurate minimum distance, but reduces numerical stability.
Since this smooth minimum distance function is an underestima-
tion of the true minimum distance, it is possible to get negative
distances for very close objects.

We use 1 to update α during the solve to guarantee a usable
(real, non-negative) smooth minimum distance. Our initial α0 for
the scene is as low as possible, but large enough to guarantee that
both our log barrier interaction costs are real and defined. If the ini-
tial α0 is too small, the distance underestimation is too great, and
the log barrier costs are either complex or undefined, then the inte-
rior point solver will throw an error. We must choose a large enough

submitted to COMPUTER GRAPHICS Forum (3/2022).

V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces 7

α0 that the heuristic will provide an α that guarantees a real smooth
distance values where D > ra + rb to ensure real log barrier costs.
For subsequent iterations, any real, non-negative smooth minimum
distance is fine.

Algorithm 1 A heuristic to find a usable α to be used within the
agent-collision and map interaction cost, gradient and hessian func-
tions.

function ALPHAHEURISTIC(α0,sa,sb)
α← α0
D← d(α,sa,sb)
while D≤ 0 do

α← α+0.1∗α0
D← d(α,sa,sb)

end while
return α

end function

3.6. Initial Paths

Using an interior point solver requires that we find feasible initial
trajectories in which the agents do not collide with other agents or
any obstacles. The supplementary material shows our failed exper-
iments in generating initial paths based on shortest distances. Some
global path planner is necessary to generate feasible initial paths.
Initially intersecting space-time rods causes NaNs in the log barrier
interaction costs which makes the interior point method intractable.
In order to generate initial plausible paths to feed into the opti-
mization, we sequentially run a modified Djikstra’s algorithm for
all agents traversing the environment mesh inspired by [TCP06].

Djikstra finds the distance-weighted least costly path along the
edges of the map mesh from the start location to the end loca-
tion for a given agent. We avoid obstacles (environment bound-
ary) by giving these edges, be, a prohibitively high traversal
cost. We only consider map edges that have a distance from the
map boundary at least greater than the agent’s collision radius.

T0 start layer

Tn = Tmax

t1

tn−1

Figure 10: Running Djikstra’s algorithm
to set initial agent paths on the map.
Red map edges indicate a higher traver-
sal cost. Since we want to set a feasi-
ble initial path for each agent, we keep
them away from the map edges as well
as away from other agent’s initial paths.

Furthermore, we
ensure that every agent
has a collision-free
initial path by making
it impossible for an
agent’s initial path to
pass too close to the
initial path of another
agent. For each agent,
upon finding an initial
path, we wipe out all
edges connected to the
path within the agent’s
collision radius. For
very constrained scenes,
it becomes impossible
to ensure collision free
initial trajectories since
agents often run out
of traversible edges

from [x0,y0] to [xn,yn].
Since agents move through both space and time, we extrude our
environment map into the t dimension and create a pre-set number
of layers from t0 to T max as shown in Figure 10. Solving this 3D
space-time Djikstra’s algorithm makes it a lot more feasible to find
collision-free inital paths for all agents. Sometimes, the coarseness
of the environment mesh, or the low number of layers in the 3D
space-time map makes it impossible for Djikstra’s algorithm to
find a feasible initial path. In this case, either the environment
map would need to be subdivided, more layers would need to
be added, or the scene itself might be infeasible given the T max

time constraints and the number and size of agents involved.
Additionally, although the space-time Djikstra’s algorithm will

variable

end time

Tmax

Figure 11: Top is the initial space-time curve output from Djikstra’s
path finding algorithm. Bottom is the final result of the solver with
optimal paths. Agents are allowed to find their own optimal end-
times while avoiding collisions in tightly constrained bottlenecks
such as this.
provide feasible initial paths, they will have many kinks and sharp
turns (Figure 11) indicating unnatural motion and thus cannot be
used in the simulation directly. These get smoothed out during the
optimization process resulting in much more realistic motion. It
is possible that this proposed method to generate initial paths will
affect the state of the final trajectories. For example, if an initial
path passes through the left of an obstacle, it might be stuck in a
local minimum even though an optimal trajectory might be through
the right side. This drawback is somewhat mitigated by using
Djikstra’s search to pre-compute the least costly paths. Either way,
whether or not the solver produces a globally minimum outcome,
the trajectories are guaranteed to be smooth, viable and collision
free.

3.6.1. Optimization

Now aggregating over all the agents in the scene, ‖A‖, we put intra-
agent cost functions Equations 4-7 together with interaction costs
Equation 8-10 and construct an optimization problem for our scene.
We aggregate boundary conditions for each agent and denote them
with capital letters to show that they apply to the entire scene. The
optimization problem

f ∗ = min
‖A‖

∑
a=1

CK
a (·)+CA

a (·)+CT
a (·)+CR

a (·)+CM
a (·)+ (12a)

submitted to COMPUTER GRAPHICS Forum (3/2022).

8 V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces

∑
a,bε

{1..‖A‖}
|a 6=b

CG
a,b(·)+CC

a,b(·) (12b)

s.t. T i ≤ T i+1 (12c)

(X0,Y 0,T 0) = (X ,Y,T)start (12d)

(Xn,Y n) = (X ,Y)end (12e)

T n ≤ T max (12f)

is solved using a quasi-newton interior point method. An outer loop
over this optimization is required for a proper log-barrier method
as explained by [NW06]. The full pseudocode overview of our
method’s outer loop, 2, illustrates this. The supplementary mate-
rial for our method include the subroutines, the calculations for
the gradients and hessian approximations of our costs, intuition for
controlling agent behavior through function weights.

Algorithm 2 A full pseudocode overview of our method with sub-
routines provided in the supplementary material.

global input variables
OuterIts≥ 1, outer loop iterations
µ,c = 0.75, log-barrier coeff and its decrement factor
α0,cuto f f = 0.2, initial alpha, Hess sparsifying cutoff
T max, max time constraint for agents
be,bv, environment edges and vertices.
K, cost function weights for agents
R, collision radius for agents
T , preferred end times
M, agent masses

end global input variables

interior point solver parameters
MaxIts, max iterations
B, trajectory boundary conditions
Stop if StepSize > 10−2(meters), norm of solver step
Stop if FirstOrderOpt > 10−2(meters), first order optimal-

ity criteria
end interior point solver parameters

Require: @COSTS, @GRADS, @HESS (supplementary mate-
rial)

function FINDOPTIMALPATHS
[S,B]← DJIKST RASPREPROCESS(R,T,bv)
S← increment t by ε to ensure ti+1 > ti
while OuterIts>0 do

S← IPSOLV ER(S,B,@COST S,@GRADS,@HESS)
µ← cµ
OuterIts← OuterIts−1

end while
return S

end function

4. Results

THe performance of our method relies on (1) the number of agents
in the scenes and (2) the complexity of the agent’s paths through

space and time. We push along each of these axes separately in
this section. We show extremely complex maze-like environments
with bottlenecks, as well as large scenes with tens (to hundreds)
of agents. In addition to the comparisons shown in the related
works, we include the obligatory circles of agents Figure 13. No-
tice that our agents take smooth, natural trajectories rather than the
strange spinning motions demonstrated by other methods. Next,
in Figure 17 we highlight the several different types of asymmet-
ric interactions supported by our method. We show the naive case
where agents collide. We show standard symmetric collision be-
tween agents. We show a stubborn snake which forces the scared
humans to move out of its path. We show a large elk who is still
scared of the humans so it changes its trajectory just as the hu-
man agents change theirs. We show a large and stubborn elephant
that goes straight to its destination while the humans have to sig-
nificantly alter trajectories to avoid it. Finally, we show a scenario
where two friends stick closer to each other on their way to their
final destination.

In Figure 14 and Figure 15, we show our method works in ex-
tremely tight environments. RVO and Implicit Crowds show that
they can navigate environmental constraints with a lot of manual
pre-processing, but nowhere near as tight as our examples. Mean-
while, NHTTC does not implement environmental constraints alto-
gether. We show that our method works in extremely constrained
scenarios such as a subway tunnel or a tight warehouse of robots
where each lane is big enough to accommodate only a single agent
and agents have to take turns to pass through to avoid locking.

Although our method is built to handle asymmetric interactions
and agents in highly constrained spaces, we also show several other
features of our method. First, our agents have flexible arrival times.
In Figure 11 we show a bottleneck where all the agents simply can-
not arrive at their destinations by their preferred end times. This
feature serves as a counterpoint to the idea of using fixed start and
end boundary conditions to model trajectory curves. In Figure 15
we show a highly constrained bottleneck of agents trying to get to
their seats on an airplane.

Additionally, we show the navigability of agents in larger con-
strained environments in Figure 18a and Figure 18b. Agents are
able to navigate the mazes while avoiding collisions with each other
at the bottlenecks.

In Figure 19 we show the flexibility and controllability of our
method. We create a scenario where one agent must meet up with
another agent to deliver a message and then arrive at his end goal
faster than the other agents. In another scenario, we direct the agent
to meet up with the second agent, yet arrive at his end goal at the
same time as the other agents. Lastly, we also provide the simple
scene where agents are ignorant of each other. The flash mob ex-
ample in Figure 20 shows how our method can be used to position
agents intricately. The corresponding submission video shows how
we are able to control the order of the placement of the agents in
the flash mob as well through the preferred end time parameter. Our
method allows careful control with no manual effort on the part of
the user, thus making it useful for games or other industrial appli-
cations.

And finally, for the sake of completeness we show Figure 16, a

submitted to COMPUTER GRAPHICS Forum (3/2022).

V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces 9

0

0.4

0.8

1.2

1.6

25 75 125 100 300 500 7000

environment boundary

0

0.2

0.4

0.6

0.8

0.0

0.5

1.0

10 20 30 40 50
number of agentsnumber of DOFs

Average Seconds Per Iteration

Figure 12: (left) we varying number of agents with 300 DOFs each. (middle) we vary the number of DOFs/agent from 90 to 540 on a fixed
scene with 8 agents. (right) we vary DOFs in the environment boundary from 2520 to 20160 on the corn maze mesh with 3 agents of 600
DOFs each in the scene. Scaling tests show near linear performance in the worst-case and linear performance in the best case.

Figure 13: Circles of agents.

1

2

3

(a) Maze of roombas. (b) Subway platform

Figure 14: In both (a) and (b) only one agent can move through the
intersection at a time.

large scene with 104 agents. We include this example to demon-
strate that even though our method is designed for small to medium
sized scenes, it can work on simple scenes with larger numbers of
agents with asymmetric interactions and still scales linearly in time.

4.1. Timings

Figure 12 provides three plots, each with different scaling infor-
mation for different usage scenarios. The first plot measure the av-
erage time per solver function iteration for an increasing number
of agents. Each agent trajectory has 100 nodes (300 DOFs) and the
performance is linear with broad-phase collision detection enabled.

Figure 15: Chaos in first class. All the passengers are in incorrect
seats.

Figure 16: A large scene with 102 agents moving to opposite sides
of a meadow while a couple of deer avoid them.

Our second plot measure the average time per iteration for an in-
creasing number of DOFS for an 8 agent circle. The number of
nodes starts off at 30 and goes all the way to 180 nodes per agent.

submitted to COMPUTER GRAPHICS Forum (3/2022).

10 V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces

0 1 2

3 4 5

Figure 17: (0) No interactions. (1) Mass (analogous to stubbornness) weighted asymmetric interactions. (2) Size and mass weighted interac-
tions. (3) Symmetric interactions.(4) Grouping friends together. (5) Size based interactions.

(a) Corn maze (b) Circle maze

Figure 18: (a) large cornmaze with eight agents all trying to get
to different locations through the maze. (b) a circular shaped maze
where agents need to navigate while avoiding collisions.

Figure 19: Left: An agent delivers a message to another agent and
rushes to his goal position. Middle: Two agents meet up briefly
before walking to their separate destinations. Right: No contact be-
tween any agents.

Performance is very nearly linear with broad phase collision de-
tection enabled. Without a broad phase, performance is quadratic.
Something to note is that increasing the number of DOFs per agent
provides no additional benefit to the quality of the simulation since

(a) Pre-smile flash mob (b) Post-smile

Figure 20: (a) group of people in a flash mob instructed to form a
smily face. Agents follow unintuitive paths through space and time
to maintain the fluidity of their motion. (b) a smily face created by
controlling the motion of the mob.

the actual physics of the space-time rods are not the end result
of our method. As long as agents trajectory curves have enough
DOFs to traverse the environment smoothly, the end results will be
good. Our third plot measures the time per iteration for an increas-
ing complexity in the environment mesh on the corn maze (Fig-
ure 18a) example with three agents and 200 trajectory nodes per
agent. Again, performances is nearly linear.

As mentioned before there is no gold-standard crowd simulation
algorithm since each scenario is so unique and intricate. Rather
than focus on timing performance for large crowds, our method
focuses on solving previously overlooked path planning scenarios
with asymmetric interactions for small to medium sized groups in
highly constrained environments. Our asymptotics show linear to

submitted to COMPUTER GRAPHICS Forum (3/2022).

V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces 11

near-linear performance, but there is plenty of room for improve-
ment in wall-clock-times through optimization and parallelization.

5. Conclusion and Future Work

In this paper we show that modeling the motion of agents through
space and time using a 3D curve resolves a number of difficulties
with multi-agent path planning. Assigning physical characteristics
such as a radius and mass to the agent’s trajectory curve lets us
intuitively simulate asymmetric interactions between agents. Our
method outputs agent paths that are smooth, can navigate through
highly constrained environments, and are parameterized by intu-
itive controls.

In the future we hope to improve our agent model to include
limited environmental perception (rather than the omniscience our
agents enjoy currently) as well as additional dynamics. As men-
tioned before, performance depends on two factors: number of
agents and their temporal support. While we can currently push
along these axes independently, a future work is to be able to push
along both axes together, i.e. handle complex environments with
large numbers of agents with intricate motion. We also hope to
extend the method in order to handle scenes with conflicting and
changing goals, e.g. a predator-prey scenario. We would also like
to extend our space-time approach to fully 3D environments which
requires performing our optimization in four dimensions. Finally,
while our focus is on robustness in path planning, there is still
further room for improvement in performance. We are excited to
explore fast space-time multi-agent path planning to scale our ap-
proach to the large dense crowds that continuum approaches excel
at, while maintaining our unique advantages.

submitted to COMPUTER GRAPHICS Forum (3/2022).

