
Volume xx (200y), Number z, pp. 1–13

Multi-Agent Path Planning with Asymmetric Interactions In Tight
Spaces Supplementary Material

V. Modi1 Y. Chen 1 , A. Madan 1 , S. Sueda 2 , and D. I. W. Levin 1

1University of Toronto, Toronto, Canada
2Texas A&M University, College Station, TX

1. Controlling Agent Behavior

Controlling agent behavior is very intuitive in our method. There are several points of control in our simulation. First, each agent has its
own pre-determined characteristics profile. This includes things such as size, mass (doubles as stubbornness), collision radius, grouping
preferences, preferred arrival time. Each of these parameters can be intuitively adjusted for any agent to get the desired behavior. Another
control point for this method is adjusting the coefficients of the energy. If the scene happens to be on a large, unconstrained map, its
advantageous to turn KM = 0 off to prevent possible numerical issues from the smooth distance function. Agents are allowed to collide if
KC is set to 0. The grouping cost can be modified through the grouping parameter for each agent pair KG. If agents need to reach their goal
by a specific end time, we use KT to control this behavior. Acceleration is controlled by the KA parameter. Regularizing the edge lengths
of each curve is important, as explained above, but modifying KR can affect the likelihood of the solver getting stuck in local minimums in
highly constrained environments. Last, but not least, KK weights the kinetic energy term and increasing it (or increasing the mass term m)
will incentivize the agent to follow a more direct path to the end location. It is very intuitive to play with these parameters in order to get the
desired behavior in your multi-agent simulation scene.

1.1. Cost Function Pseudo-code

2. Discrete Gradients

Included below are the discrete gradients for each of our cost terms. For the sake of brevity, we do not include the gradient assem-
bly/aggregation steps, only the element-wise gradient terms.

2.1. Kinetic Gradient

The kinetic energy gradient below is aggregated over each trajectory curve segment ei = [xi,yi, t i,xi+1,yi+1, t i+1] for each agent in the entire
scene.

∇xiCK(sa) =−KK
a ma

xi+1− xi

t i+1− t i (1)

∇yiCK(sa) =−KK
a ma

yi+1− yi

t i+1− t i (2)

∇t iCK(sa) =
1
2

KK
a ma

(xi+1− xi)2 +(yi+1− yi)2

(t i+1− t i)2 (3)

∇xi+1CK(sa) =−∇xiCK(sa) (4)

∇yi+1CK(sa) =−∇yiCK(sa) (5)

∇t i+1CK(sa) =−∇t iCK(sa) (6)

(7)

submitted to COMPUTER GRAPHICS Forum (3/2022).

https://orcid.org/ 0000-0002-9350-494X
https://orcid.org/0000-0001-7547-9587
https://orcid.org/0000-0001-7547-9587
https://orcid.org/0000-0003-4656-498X
https://orcid.org/0000-0001-7079-1934

2 V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces Supplementary Material

Algorithm 1 The cost function is a summation of all individual costs. This is used in the interior point solve.

Require: global input variables from main paper
Require: @ALPHAHEURISTIC (main paper)
Require: @MarkedAsCloseBy (manually denoted agents are close-by)
Require: @BVH (A 3D tree structure storing agent trajectory nodes)
Require: @Overlaps (broad-phase check if two BVHs overlap)

function COSTS(S,α0,K,R,T,M,bv,T max,µ)
f ← 0
for a,bε(0, ..,‖A‖) do

sa,sb from S
ra,rb from R
KC,KG from K
α← ALPHAHEURIST IC(α0,sa,sb)
if MarkedAsCloseBy(A,B) or Overlaps(BVH(A), BVH(B)) then

f ← f +µCC(d(α,sa,sb),K
C,ra,rb)

f ← f +µCG(d(α,sa,sb),K
G,ra,rb)

end if
end for
for aε(0, ..,‖A‖) do

α← ALPHAHEURIST IC(α0,sa,bv)
sa,ra,ma,T

p
a ,T max

a from S,R,M,T,T max

KK ,KA,KT ,KR,KM from K
f ← f +CM(d(α,sa,bv),KM ,ra)
f ← f +CK(sa,ma,KK)+CA(sa,KA)
f ← f +CT (sa,KT ,T p

a)+CR(sa,KR)
end for
return f

end function

2.2. Acceleration Gradient

The accelation energy measures the bend between two rod segments ei−1 and ei. The gradient is aggregated over the non-boundary nodes of
each trajectory curve ni = [xi,yi, t i] where i 6= 0,n for an agent in the scene. Using the chain rule, we get

∇ni−1CA(sa) =
∂CA

∂θi
∂θ

i

∂ni−1 (8)

∇niCA(sa) =
∂CA

∂θi
∂θ

i

∂ni (9)

∇ni+1CA(sa) =
∂CA

∂θi
∂θ

i

∂ni+1 (10)

After further chain rule and breaking down each partial into its individual components, we get

vi = ni+1−ni (11)

vi+1 = ni−ni−1 (12)

∇ni−1CK(sa) =−KA
θ

i

(
1

1+(
‖vi×vi+1‖

vi·vi+1)

) vi · vi+1 1
‖vi×vi+1‖ ∗

(
(vi× vi+1)T [vi+1]M

)
− vi+1‖vi× vi+1‖

(vi · vi+1)2

 (13)

∇ni+1CK(sa) = KA
θ

i

(
1

1+(
‖vi×vi+1‖

vi·vi+1)

) vi · vi+1 1
‖vi×vi+1‖ ∗

(
(vi× vi+1)T [vi]M

)
− vi‖vi× vi+1‖

(vi · vi+1)2

 (14)

∇niCK(sa) =−∇ni−1CK(sa)−∇ni+1CK(sa) (15)

submitted to COMPUTER GRAPHICS Forum (3/2022).

V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces Supplementary Material3

In the acceleration gradient, we manually set ∇t i−1CK(sa) = ∇t iCK(sa) = ∇t i+1CK(sa) = 0 since the kinetic gradient already controls
acceleration in the t direction.

2.3. Preferred End Time Gradient

This gradient only affects the tn for an agent as shown below

∇tnCT (sa) = KT (tn−T p) (16)

2.4. Regularizer Gradient

The regularizer gradient below is aggregated over each trajectory curve segment ei = [xi,yi, t i,xi+1,yi+1, t i+1] for each agent in the entire
scene. The regularizer energy and by extension, gradient only regularize time intervals over the trajectory as follows:

∇t iCR(sa) = KT
tn

n
(t i+1− t i)2 (17)

∇t i+1CR(sa) =−KT
tn

n
(t i+1− t i)2 . (18)

2.5. Collision Interaction Gradient

The collision gradient for the interaction between agent a and agent b is aggregated over each curve segment for the two trajectories. First we
take the derivatives of the LogSumExp smooth distance function d(α,u(sa),u(sb)) w.r.t to the upsampled trajectory curves of size m >> n
u(s) = upsample(s) with k,qε0, ..,m denoting the upsampled node indices.

∂d
∂uk

a
=
−1
α

e−α‖uk
a−uq

b‖ uk
a

‖uk
a−uq

b‖
(19)

∂d
∂uq

b
=
−1
α

e−α‖uk
a−uq

b‖ −uq
b

‖uk
a−uq

b‖
(20)

Next, we put the LogSumExp derivatives together with the m×n jacobians Ja =
∂ua
∂sa

and Jb =
∂ub
∂sb

into the gradients

∇saC
C(d(α,u(sa),u(sb)),ra,rb) =−

KC
a

−ra− rb +d
∂d
∂uk

a
Ja (21)

∇sbC
C(d(α,sa,sb),ra,rb) =−

KC
b

−ra− rb +d
∂d
∂uk

b
Jb (22)

Summed up over each agent-agent interaction interaction in the scene, this gives us the collision gradient.

2.6. Grouping(Friendship) Interaction Gradient

We use the same notation and jacobians (∂u
∂s) as the Collision Gradient above to describe the Grouping cost’s gradient

∇saC
G(d(α,sa,sb),ra,rb) = 2KG

a (−ra− rb +d)
∂d
∂uk

a
Ja (23)

∇sbC
G(d(α,sa,sb),ra,rb) = 2KG

b (−ra− rb +d)
∂d
∂uk

b
Jb (24)

submitted to COMPUTER GRAPHICS Forum (3/2022).

4 V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces Supplementary Material

2.7. Map Interaction Gradient

For interactions with the map boundary vertices bv, we calculate the gradients using similar notation as above, except since the boundary is
2D, we can zero out the t dimension before passing points into the LogSumExp distance function. The map gradient for agent a is

∇saC
M
a (d(α,sa,bv),ra,) =

KM
a

(−ra +d)
∂d
∂uk

a
Ja (25)

(26)

2.8. Gradient Pseudocode

Algorithm 2 The gradient is assembled as a sump of the individual components. In the appendix we include the gradient formulations. The
resulting gradient is used in the interior point (IPSover).

Require: global input variables from Algorithm in main paper
Require: @ALPHAHEURISTIC (main submission)
Require: @MarkedAsCloseBy (manually denoted agents are close-by)
Require: @BVH (A 3D tree structure storing agent trajectory nodes)
Require: @Overlaps (broad-phase check if two BVHs overlap)

function GRADS(S,α0,K,R,T,M,bv,T max,µ)
g← 0
for a,bε(0, ..,‖A‖) do

sa,sb from S
ra,rb from R
KC,KG from K
α← ALPHAHEURIST IC(α0,sa,sb)
if MarkedAsCloseBy(A,B) or Overlaps(BVH(A), BVH(B)) then

g← g+µ∇CC(d(α,sa,sb),K
C,ra,rb)

g← g+µ∇CG(d(α,sa,sb),K
G,ra,rb)

end if
end for
for aε(0, ..,‖A‖) do

α← ALPHAHEURIST IC(α0,sa,bv)
sa,ra,ma,T

p
a ,T max

a from S,R,M,T,T max

KK ,KA,KT ,KR,KM from K
g← g+∇CM(d(α,sa,bv),KM ,ra)
g← g+∇CK(sa,ma,KK)+∇CA(sa,KA)
g← g+∇CT (sa,KT ,T p

a)+∇CR(sa,KR)
end for
return g

end function

3. Discrete Hessians and Approximations

3.1. Kinetic Hessian

The kinetic hessian below is aggregated over each trajectory curve segment ei = [xi,yi, t i,xi+1,yi+1, t i+1] for each agent a = [1,‖A‖] in the
entire scene. The element-wise block is

ma

1
(t i+1−t i)

0 0 − 1
(t i+1−t i)

0 0

0 1
(t i+1−t i)

0 0 − 1
(t i+1−t i)

0

0 0 (xi+1−xi)2+(yi+1−yi)2

(t i+1−t i)3 0 0 − (xi+1−xi)2+(yi+1−yi)2

(t i+1−t i)3

− 1
(t i+1−t i)

0 0 1
(t i+1−t i)

0 0

0 − 1
(t i+1−t i)

0 0 1
(t i+1−t i)

0

0 0 − (xi+1−xi)2+(yi+1−yi)2

(t i+1−t i)3 0 0 (xi+1−xi)2+(yi+1−yi)2

(t i+1−t i)3

(27)

submitted to COMPUTER GRAPHICS Forum (3/2022).

V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces Supplementary Material5

3.2. Acceleration Hessian

The acceleration hessian measures the second order effects of the bend between two rod segments ei−1 and ei in the trajectory curve of
agent a. It is aggregated over the inside nodes, ni = [xi,yi, t i] where i 6= 0,n, of the trajectory curve. WLOG, for the non-boundary node i, we
subdivide the symmetric 9x9 hessian into the following unique 3x3 blocks

∂
2CA

a

∂ni−1∂ni−1 = H1,1 (28)

∂
2CA

a

∂ni−1∂ni+1 = H1,3 (29)

∂
2CA

a

∂ni+1∂ni+1 = H3,3. (30)

The indexes of the block correspond to their placement in the 9x9 hessian. We put together the node-wise hessian as H1,1 −H1,1−H1,3 H1,3

(−H1,1−H1,3)T −(−H1,1−H1,3)T − (−(H1,3)T −H3,3)T (−(H1,3)T −H3,3)T

(H1,3)T −(H1,3)T −H3,3 H3,3

 . (31)

For brevity, we define the following terms for use in just the acceleration hessian section:

d = vi · vi+1 (32)

n = vi× vi+1 (33)

c = ‖vi× vi+1‖ (34)

q = atan2(n,d) (35)

m =
1

1+
(n

d
)2 (36)

L = [vi]M cross product matrix of vi (37)

M = [vi+1]M cross product matrix of vi+1 (38)

T = (M⊗ vi+1)γcγ tensor contraction (39)

The three unique components of the hessian are

H1,1 =−m

(
−m

d
n (c)

T [vi+1]M − vi+1n

d2

)(
d
n (c)

T [vi+1]M − vi+1n

d2

)T

+−q

((
2 n

d

m2

) d
n (c)

T [vi+1]M − vi+1n

d2

)(
d
n (c)

T [vi+1]M − vi+1n

d2

)T

+−qm

(
d2n((Mc(vi+1)T −d(M)T M)+ (vi+12cT M))− (dcT M − (vi+1)T n2)∗ (−2dnvi+1 +−(d2(1

n)(c
T M)))T

(d2n)2

)
,

(40)

H1,3 =−m

(
m

d
n (c)

T [vi]M − vin

d2

)(
d
n (c)

T [vi+1]M − vi+1n

d2

)T

(41)

+−q

((
−

2 n
d

m2

) d
n (c)

T [vi]M − vin

d2

)(
d
n (c)

T [vi+1]M − vi+1n

d2

)T

(42)

+−qm

(
d2n(((MT c)(vi)T −d(MT LT +T))+−(In2 +2vi+1cT L))− (dcT M − (vi+1)T n2)((2dnvi)+ (d2 1

n (c
T L)))T

(d2n)2

)
, (43)

H3,3 = m

(
m

d
n (c)

T [vi]M − vin

d2

)(
d
n (c)

T [vi]M − vin

d2

)T

(44)

+q

((
−

2 n
d

m2

) d
n (c)

T [vi]M − vin

d2

)(
d
n (c)

T [vi]M − vin

d2

)T

(45)

submitted to COMPUTER GRAPHICS Forum (3/2022).

6 V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces Supplementary Material

+qm

(
d2n(((LT c)(vi)T −dLT LT)+−(vi2cT L))− (dcT L− (vi)T n2)((2dnvi)+ (d2 1

n (c
T L)))T

(d2n)2

)
. (46)

The resulting 9x9 hessian is assembled over each interior node of each trajectory curve in the scene.

3.3. Preferred End Time Hessian

This is the simplest hessian. It is the constant matrix 0
. . . 0
0 1

 (47)

for each agent in the scene since the only non-zero value in the hessian is ∂
2CT

a
∂tn∂tn

3.4. Regularizer Approximate Hessian

The regularizer hessian below is aggregated over each trajectory curve segment ei = [xi,yi, t i,xi+1,yi+1, t i+1] for each agent in the entire
scene in a symmetric block-diagonal fashion. The approximation assumes the end time, tn, for each agent is constant. Therefore, for each
trajectory curve segment in the scene, we assemble to following block into the global hessian:

0 0 0 0 0 0
0 0 0 0 0 0

0 0 2KR
a

tn
n

(t i+1−t i)3 0 0 −2KR
a

tn
n

(t i+1−t i)3

0 0 0 0 0 0
0 0 0 0 0 0

0 0 −2KR
a

tn
n

(t i+1−t i)3 0 0 2KR
a

tn
n

(t i+1−t i)3

(48)

3.5. Collision Interaction Approximate Hessian

The collision hessian approximation is an agent-wise block diagonal hessian with dense individual blocks. Each block is subsequently
sparsified by the function in 3. The agent-wisedense approximation is the following

∇2
saC

C(d(α,u(sa),u(sb)),ra,rb) =
KC

a

(−ra− rb +d)2

(
∂d
∂uk

a
Ja

)(
∂d
∂uk

a
Ja

)T

. (49)

This term is passed into the sparsification function which uses the kronecker product to zero out the indices of the hessian which correspond
to vertices that have an absolute distance greater than the given cutoff value. The sparse hessian is subsequently assembled into the correct
block of the overall hessian as shown in Figure 1. For simplicity, we drop the smoothing function’s 2nd derivative from our hessian and drop

Figure 1: This is the assembled collision hessian matrix
approximation where each block diagonal component

has been passed through a sparsification function.

the off-diagonal terms. We find that dropping the off-diagonal blocks actually improves convergence and smoothness of trajectories.

submitted to COMPUTER GRAPHICS Forum (3/2022).

V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces Supplementary Material7

3.6. Grouping(Friendship) Interaction Hessian

Using the same notation as in the collision interaction hessiani, we present the grouping hessian. This is passed through the same sparsification
function as the collision hessian before assembly.

∇2
saC

G(d(α,u(sa),u(sb)),ra,rb) = 2KG
a

(
∂d
∂uk

a
Ja

)(
∂d
∂uk

a
Ja

)T

(50)

3.7. Map Interaction Approximate Hessian

Again, we pass the following map interaction hessian through a sparsification function and then assemble it together into the global hessian.

∇2
saC

M(d(α,u(sa),bv),ra,rb) =
KM

a

(−ra +d)2

(
∂d
∂uk

a
Ja

)(
∂d
∂uk

a
Ja

)T

. (51)

3.8. Hessian and Hessian Appx Pseudo-code

submitted to COMPUTER GRAPHICS Forum (3/2022).

8 V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces Supplementary Material

Algorithm 3 The hessian is assembled as a sump of the individual components. In the appendix we include the hessian formulations
and approximations. Some of the components, HC,HM , are block diagonal, but have dense blocks. So we sparsify these blocks using the
SPARSIFYHESS function. In the end, we have a sparse hessian to use in the interior point (IPSover).

Require: : global input variables from Algorithm in main paper
Require: @ALPHAHEURISTIC (main paper)
Require: @MarkedAsCloseBy (manually denoted agents are close-by)
Require: @BVH (A 3D tree structure storing agent trajectory nodes)
Require: @Overlaps (broad-phase check if two BVHs overlap)

function HESS(S,α0,K,R,T,M,bv,T max,µ)
H,HM ,HG,HC← 0
for a,bε(0, ..,‖A‖) do

sa,sb from S
ra,rb from R
KC,KG from K
α← ALPHAHEURIST IC(α0,sa,sb)
if MarkedAsCloseBy(A,B) or Overlaps(BVH(A), BVH(B)) then

HC← µ∇2CC(d(α,sa,sb),K
C,ra,rb)

HG← µ∇2CG(d(α,sa,sb),K
G,ra,rb)

end if
H← H +SPARSIFY HESS(HC +HG,sa,sb,cuto f f)

end for
for aε(0, ..,‖A‖) do

α← ALPHAHEURIST IC(α0,sa,bv)
sa,ra,ma,T

p
a ,T max

a from S,R,M,T,T max

KK ,KA,KT ,KR,KM from K
HM ←∇2CM(α,sa,bv,KM ,ra)
H← H +SPARSIFY HESS(HM ,sa,bv,cuto f f)
H← H +∇2CK(sa,ma,KK)+∇2CA(sa,KA)
H← H +∇2CR(sa,KR)

end for
return H

end function

function SPARSIFYHESS(H,V1,V2,cuto f f Dist)
D← maxAbsoluteDist(V1,V2)
for iε[0,rows(H)] do

for jε[0,cols(H)] do
if H(i, j)< cuto f f Dist then

H(i, j)← 0
end if

end for
end for

end function

4. Table of All Example Timings

This table shows our experiments of attempting to generate plausible initial paths using our space-time djikstras approach, the shortest path
between the agent’s start and end, using the shortest path with randomly jittered nodes to prevent overlaps. Ours is the only viable option that
works for every example. Random jittering works when the number of agents and interactions is EXCEEDINGLY small. Naive shortest path
works when there are no intersections between the agents or the map.

submitted to COMPUTER GRAPHICS Forum (3/2022).

V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces Supplementary Material9

Scene Space-
Time
Djik-
stras

Shortest
Path

Shortest
Path
with
Ran-
dom

Jitter-
ing

2 Circle Y N Y
8 Circle Y N Y
10 Circle Y N N
20 Circle Y N N
30 Circle Y N N
Airplane Seats Y N N
No Collision* N/A N/A N/A
Symmetric Y N N
Mass Based Y N N
Size Based Y N N
Size+Mass Based Y N N
Grouping Y Y Y
Roombas Y N Y
Bottleneck Y N N
Square Maze Y N N
Circle Maze Y N N
Subway Platform Y N N
Safari Y N N
Smily Face Y N N
Battlefield Y N N

Table 1: Generation of plausible initial paths with and without using Space-time Djikstras. Y - plausible path produced, N - not produced.
*In this case, interactions are ignored. So any path is a feasible initial path.

submitted to COMPUTER GRAPHICS Forum (3/2022).

10 V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces Supplementary Material

5. Table of All Example Timings

Scene Num
Agents

DOFs Layers Djikstra
Time(s) Per

Agent

Avg Time(s)
Per Iteration

Total Solve
Time(s)

2 Circle 2 100 3 0.044 0.052 0.790
8 Circle 8 400 9 0.127 0.428 16.258
10 Circle 10 500 9 0.127 0.647 50.308
20 Circle 20 1000 9 0.140 2.316 254.330
30 Circle 30 1500 9 0.165 5.617 526.861
Airplane Seats 5 250 10 0.836 0.041 3.583
No Collision 3 90 5 0.131 0.012 0.456
Symmetric 3 90 5 0.134 0.028 2.355
Mass Based 3 90 5 0.134 0.050 3.820
Size Based 3 90 5 0.129 0.062 2.671
Size+Mass Based 3 90 5 0.131 0.012 0.346
Grouping 3 90 5 0.129 0.021 0.849
Roombas 3 105 10 0.131 0.015 2.049
Bottleneck 5 250 5 0.299 0.107 29.607
Square Maze 5 1000 3 6.343 1.095 83.240
Circle Maze 4 1200 3 1.175 2.877 385.526
Subway Platform 2 100 10 0.083 0.036 3.177
Safari 12 660 15 1.307 1.520 69.290
Smily Face 24 1080 20 4.000 4.497 535.118
Battlefield 102 6120 10 0.070 0.768 361.186

Table 2: Table of timings for all examples

6. All Agent Parameters

6.1. 2,8,10,20,30 Circles

• α0 = 10
• AgentTypes: Human
• Human: [KC = 1, KG = 0, KK = 1, KA = 0, KT = 0, KR = 100, KM = 0, radius = 0.5, mass=1]
• Solver

– Djikstra’s Agent Radius Multiplier = 1.5
– µ = 1,c = 0.5
– MaxIts = 50,OuterIts = 5

6.2. Airplane Seating

• α0 = 200
• AgentTypes: Human
• Human: [KC = 1, KG = 0, KK = 10, KA = 1, KT = 0, KR = 100, KM = 1, radius = 0.1, mass = 1]
• Solver

– Djikstra’s Agent Radius Multiplier = 2.5
– µ = 1,c = 0.75
– MaxIts = 200,OuterIts = 1

6.3. 3 Agent No Collisions

• α0 = 30
• AgentTypes: Human
• Human: [KC = 0, KG = 0, KK = 1, KA = 1, KT = 0, KR = 100, KM = 0, radius = 0.5, mass = 1]
• Solver

submitted to COMPUTER GRAPHICS Forum (3/2022).

V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces Supplementary Material11

– Djikstra’s Agent Radius Multiplier = 1.5
– µ = 1,c = 0.5
– MaxIts = 40,OuterIts = 2

6.4. 3 Agent Symmetric

• α0 = 30
• AgentTypes: Human
• Human: [KC = 1, KG = 0, KK = 1, KA = 0, KT = 0, KR = 10, KM = 0, radius = 0.5, mass = 1]
• Solver

– Djikstra’s Agent Radius Multiplier = 1.5
– µ = 1,c = 0.5
– MaxIts = 40,OuterIts = 2

6.5. 3 Agent Mass/Stubbornness Based

• α0 = 30
• AgentTypes: Human, Snake
• Human: [KC = 1, KG = 0, KK = 1, KA = 0, KT = 0, KR = 100, KM = 0, radius = 0.5, mass = 1]
• Snake: [KC = 1, KG = 0, KK = 1, KA = 0, KT = 0, KR = 100, KM = 0, radius = 0.5, mass = 10]
• Solver

– Djikstra’s Agent Radius Multiplier = 1.5
– µ = 1,c = 0.5
– MaxIts = 40,OuterIts = 5

6.6. 3 Agent Size Based

• α0 = 150
• AgentTypes: Human, Deer
• Human: [KC = 1, KG = 0, KK = 1, KA = 0, KT = 0, KR = 100, KM = 0, radius = 0.5, mass = 1]
• Deer: [KC = 1, KG = 0, KK = 1, KA = 0, KT = 0, KR = 100, KM = 0, radius = 1.5, mass = 1]
• Solver

– Djikstra’s Agent Radius Multiplier = 1.5
– µ = 1,c = 0.5
– MaxIts = 40,OuterIts = 5

6.7. 3 Agent Size+Mass Based

• α0 = 150
• AgentTypes: Human, Elephant
• Human: [KC = 1, KG = 0, KK = 1, KA = 0, KT = 0, KR = 100, KM = 0, radius = 0.5, mass = 1]
• Elephant: [KC = 1, KG = 0, KK = 1, KA = 0, KT = 0, KR = 100, KM = 0, radius = 1, mass = 10]
• Solver

– Djikstra’s Agent Radius Multiplier = 1.5
– µ = 1,c = 0.5
– MaxIts = 40,OuterIts = 5

6.8. 3 Agent Grouping

• α0 = 30
• AgentTypes: Human
• Human: [KC = 1, KG = 1, KK = 1, KA = 0, KT = 0, KR = 100, KM = 0, radius = 0.5, mass = 1]
• Solver

– Djikstra’s Agent Radius Multiplier = 1.5
– µ = 1,c = 0.5
– MaxIts = 40,OuterIts = 2

submitted to COMPUTER GRAPHICS Forum (3/2022).

12 V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces Supplementary Material

6.9. Roombas

• α0 = 100
• AgentTypes: Roomba
• Roomba: [KC = 1, KG = 0, KK = 10, KA = 1, KT = 0, KR = 100, KM = 1, radius = 0.1, mass = 1]
• Solver

– Djikstra’s Agent Radius Multiplier = 1.5
– µ = 1,c = 0.5
– MaxIts = 50,OuterIts = 2

6.10. Bottleneck

• α0 = 50
• AgentTypes: Elephant
• Elephant: [KC = 1, KG = 0, KK = 10, KA = 0, KT = 10, KR = 100, KM = 1, radius = 1, mass = 1]
• Solver

– Djikstra’s Agent Radius Multiplier = 1.5
– µ = 1,c = 0.75
– MaxIts = 100,OuterIts = 2

6.11. Square Maze

• α0 = 100
• AgentTypes: Human
• Human: [KC = 1, KG = 0, KK = 1, KA = 0, KT = 0, KR = 100, KM = 1, radius = 0.5, mass = 1]
• Solver

– Djikstra’s Agent Radius Multiplier = 2
– µ = 1,c = 0.75
– MaxIts = 30,OuterIts = 5

6.12. Circle Maze

• α0 = 100
• AgentTypes: Human
• Human: [KC = 1, KG = 0, KK = 1, KA = 0, KT = 0, KR = 100, KM = 1, radius = 0.15, mass = 1]
• Solver

– Djikstra’s Agent Radius Multiplier = 1.5
– µ = 1,c = 0.5
– MaxIts = 30,OuterIts = 5

6.13. Subway Platform

• α0 = 150
• AgentTypes: Human
• Human: [KC = 1, KG = 0, KK = 1, KA = 0, KT = 0, KR = 10, KM = 1, radius = 0.35, mass = 1]
• Solver

– Djikstra’s Agent Radius Multiplier = 2
– µ = 1,c = 0.75
– MaxIts = 150,OuterIts = 2

6.14. Safari

• α0 = 100
• AgentTypes: Human, Baboon, Elephant
• Human: [KC = 1, KG = 0, KK = 1, KA = 0, KT = 1, KR = 10, KM = 1, radius = 0.25, mass = 1]
• Human: [KC = 1, KG = 0, KK = 1, KA = 0, KT = 5, KR = 10, KM = 1, radius = 0.25, mass = 1]

submitted to COMPUTER GRAPHICS Forum (3/2022).

V. Modi & Y. Chhen & A. Madan & S. Sueda & D. I. W. Levin / Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces Supplementary Material13

• Elephant: [KC = 1, KG = 0, KK = 1, KA = 0, KT = 0, KR = 10, KM = 1, radius = 1.2, mass = 100]
• Solver

– Djikstra’s Agent Radius Multiplier = 1.5
– µ = 1,c = 0.75
– MaxIts = 40,OuterIts = 5

6.15. Smily Face

• α0 = 100
• AgentTypes: Human
• Human: [KC = 1, KG = 0, KK = 1, KA = 0, KT = 0, KR = 100, KM = 0, radius = 0.25, mass = 1]
• Solver

– Djikstra’s Agent Radius Multiplier = 1.5
– µ = 1,c = 0.8
– MaxIts = 50,OuterIts = 5

6.16. Battlefield

• α0 = 40
• AgentTypes: Human
• Human: [KC = 10, KG = 0, KK = 1, KA = 0, KT = 0, KR = 100, KM = 0, radius = 0.25, mass = 1]
• Solver

– Djikstra’s Agent Radius Multiplier = 1.5
– µ = 1,c = 0.8
– MaxIts = 3,OuterIts = 100

submitted to COMPUTER GRAPHICS Forum (3/2022).

